Based on K. H. Rosen: Discrete Mathematics and its Applications.
Lecture 16: Prime numbers. Fundamental Theorem of Arithmetic (FTA). Section 4.3

1 Number Theory: FTA and gcd of numbers

1.1 Prime numbers and the FTA

Definition 1. An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.

Theorem 2. (THE FUNDAMENTAL THEOREM OF ARITHMETIC) Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Theorem 3. If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.

Proof. In n is a composite numbers, this means, it factors as a product $n=a b$, where $a>1$ and $b>1$. If $a \leq \sqrt{n}$ we finish the proof, otherwise if $a>\sqrt{n}$, then

$$
b=\frac{n}{a} \leq \frac{n}{\sqrt{n}}=\sqrt{n}
$$

will do the work for us.
Theorem 4. There are infinitely many primes.
Proof. We will prove this theorem using a proof by contradiction. We assume that there are only finitely many primes listed as $p_{1}, p_{2}, \ldots, p_{n}$. Consider the number

$$
Q=p_{1} p_{2} \ldots p_{n}+1
$$

By the fundamental theorem of arithmetic, Q has a prime factor p. However, none of the primes p_{j} divides Q. By properties of the division if p_{j} divides Q and also divides the product $p_{1} p_{2} \ldots p_{n}$, then it must divide the difference $Q-p_{1} p_{2} \ldots p_{n}=1$, which is not possible. As conclusion, we have a prime p that is not in our finite list (which was suppose to contain all the primes) and this shows that we do not have a finite list containing all primes.

The above result says that there are infinitely many primes. One could ask, how likely are we to find them, say in the interval $[0, x]$ (for a real number x)?

Theorem 5. (THE PRIME NUMBER THEOREM) The ratio of the number of primes not exceeding x and $\frac{x}{\ln (x)}$ approaches 1 as x grows without bound. (Here $\ln (x)$ is the natural logarithm of x.)

Now, this result says that probability of selecting a prime number when a positive integer is selected in the interval $[0, n]$ is approximately $\frac{n}{\frac{n}{\ln (n)}}=\frac{1}{\ln (n)}$. In other words the n-th prime p_{n} is approximately of the order $n \ln (n)$.

1.2 Greatest Common divisor

Definition 6. Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b. The greatest common divisor of a and b is denoted by $\operatorname{gcd}(a, b)$.

The following lemma is the basis for Euclidean algorithm
Lemma 7. Let $a=b q+r$, where a, b, q, and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$. In particular when $a, b>0$ and q,r are the quotient of the remainder of the division of a by b, we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)
$$

The Euclidean Algorithm to find $\operatorname{gcd}(a, b)$ for $a \geq b>0$:

1. Put $r_{0}=a$ and $r_{1}=b$.
2. Compute r_{2} from $r_{0}=r_{1} q_{1}+r_{2}$ with $0 \leq r_{2}<r_{1}=b$.
3. Compute r_{3} from $r_{1}=r_{2} q_{2}+r_{3}$ with $0 \leq r_{3}<r_{2}$.
4. Compute, in general from r_{k+2} from $r_{k}=q_{k+1} r_{k+1}+r_{k+2}$, we obtain $r_{k+2}<r_{k+1}$.

Since $r_{0}=a \geq b=r_{1}>r_{2}>\cdots>r_{k+1}>r_{k+2} \cdots \geq 0$, the process eventually terminates with some $r_{n+1}=0$ and $r_{n-1}=r_{n} q_{n}$. The lemma above is saying that

$$
\operatorname{gcd}\left(r_{0}=a, r_{1}=b\right)=\operatorname{gcd}\left(r_{2}, r_{1}\right)=\cdots=\operatorname{gcd}\left(r_{n}, r_{n-1}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
$$

The Euclid's algorithm is replacing in each step the smaller number of $\left(r_{k}, r_{k+1}\right)$ with the remainder of the division of r_{k} and r_{k+1} and works instead with the new pair $\left(r_{k+1}, r_{k+2}\right)$ of smaller numbers to find the gcd .
procedure $\operatorname{gcd}(a, b:$ positive integers)

$$
\begin{aligned}
& x=a \\
& y=b
\end{aligned}
$$

$$
\text { while } y \neq 0
$$

$$
r=x \bmod y
$$

$$
x=y
$$

$$
y=r
$$

return $\mathrm{x}(x=\operatorname{gcd}(a, b))$
At the same we find the gcd of two numbers, we can express that gcd as a linear combination of the original numbers using integer coefficients. The result can be stated:

Theorem 8. (BÉZOUT'S THEOREM) If a and b are positive integers, then there exist integers s and t such that $\operatorname{gcd}(a, b)=s a+t b$.

An extended Euclidean algorithm is an algorithm that finds $\operatorname{gcd}(a, b)$ and, at the same time, finds integers t and s such that $\operatorname{gcd}(a, b)=s a+t b$. In the following table the subsequent q, r, s, t are obtained using, for $n \geq 1$, the formulas:

$$
\begin{aligned}
& q_{n+1}=r_{n} / / r_{n-1} r_{n+1}=r_{n} \% r_{n-1}=r_{n-1}-q r_{n} \\
& s_{n+1}=s_{r-1}-q s_{r} t_{n+1}=t_{r-1}-q t_{r} \\
& \begin{array}{c||c|c|c|c|c|c|c|}
\\
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline q & & & 5 & 4 & 1 & 1 & 2 \\
\hline r & 240 & 46 & 10 & 6 & 4 & 2 & 0 \\
\hline s & 1 & 0 & 1 & -4 & 5 & -9 & \\
\hline t & 0 & 1 & -5 & 21 & -26 & 47 & \\
\hline
\end{array}
\end{aligned}
$$

For example to get the third column $(n=2)$, we divide 240 by 46 obtaining quotient $q=5$ and remainder $r=10$. On the other hand $s_{2}=s_{0}-q s_{1}=1-0(5)=1$ and $t_{2}=t_{0}-q t_{1}=0-1(5)=-5$. In this way we obtain the second column $(q, r, s, t)=(5,10,1,-5)$ and continue the the process.
When we encounter $r_{n}=0$, the triple $(g c d, s, t)$ is in the previous column as $\left(r_{n-1}, s_{n-1}, t_{n-1}\right)$.
In our example above, $\operatorname{gcd}(240,46)=2$ and $2=(-9)(240)+(47)(46)$.

